901 research outputs found

    Domain and range for angelic and demonic compositions

    Full text link
    We give finite axiomatizations for the varieties generated by representable domain--range algebras when the semigroup operation is interpreted as angelic or demonic composition, respectively

    Semigroups with if-then-else and halting programs

    Get PDF
    The "if–then–else" construction is one of the most elementary programming commands, and its abstract laws have been widely studied, starting with McCarthy. Possibly, the most obvious extension of this is to include the operation of composition of programs, which gives a semigroup of functions (total, partial, or possibly general binary relations) that can be recombined using if–then–else. We show that this particular extension admits no finite complete axiomatization and instead focus on the case where composition of functions with predicates is also allowed (and we argue there is good reason to take this approach). In the case of total functions — modeling halting programs — we give a complete axiomatization for the theory in terms of a finite system of equations. We obtain a similar result when an operation of equality test and/or fixed point test is included

    Identities in the Algebra of Partial Maps

    Get PDF
    We consider the identities of a variety of semigroup-related algebras modelling the algebra of partial maps. We show that the identities are intimately related to a weak semigroup deductive system and we show that the equational theory is decidable. We do this by giving a term rewriting system for the variety. We then show that this variety has many subvarieties whose equational theory interprets the full uniform word problem for semigroups and consequently are undecidable. As a corollary it is shown that the equational theory of Clifford semigroups whose natural order is a semilattice is undecidable

    Monoids with tests and the algebra of possibly non-halting programs

    Get PDF
    We study the algebraic theory of computable functions, which can be viewed as arising from possibly non-halting computer programs or algorithms, acting on some state space, equipped with operations of composition, if-then-else and while-do defined in terms of a Boolean algebra of conditions. It has previously been shown that there is no finite axiomatisation of algebras of partial functions under these operations alone, and this holds even if one restricts attention to transformations (representing halting programs) rather than partial functions, and omits while-do from the signature. In the halting case, there is a natural “fix”, which is to allow composition of halting programs with conditions, and then the resulting algebras admit a finite axiomatisation. In the current setting such compositions are not possible, but by extending the notion of if-then-else, we are able to give finite axiomatisations of the resulting algebras of (partial) functions, with while-do in the signature if the state space is assumed finite. The axiomatisations are extended to consider the partial predicate of equality. All algebras considered turn out to be enrichments of the notion of a (one-sided) restriction semigrou

    Partial maps with domain and range: extending Schein's representation

    Get PDF
    The semigroup of all partial maps on a set under the operation of composition admits a number of operations relating to the domain and range of a partial map. Of particular interest are the operations R and L returning the identity on the domain of a map and on the range of a map respectively. Schein [25] gave an axiomatic characterisation of the semigroups with R and L representable as systems of partial maps; the class is a finitely axiomatisable quasivariety closely related to ample semigroups (which were introduced—as type A semigroups—by Fountain, [7]). We provide an account of Schein's result (which until now appears only in Russian) and extend Schein's method to include the binary operations of intersection, of greatest common range restriction, and some unary operations relating to the set of fixed points of a partial map. Unlike the case of semigroups with R and L, a number of the possibilities can be equationally axiomatised

    Algebraic foundations for qualitative calculi and networks

    Full text link
    A qualitative representation ϕ\phi is like an ordinary representation of a relation algebra, but instead of requiring (a;b)ϕ=aϕbϕ(a; b)^\phi = a^\phi | b^\phi, as we do for ordinary representations, we only require that cϕaϕbϕ    ca;bc^\phi\supseteq a^\phi | b^\phi \iff c\geq a ; b, for each cc in the algebra. A constraint network is qualitatively satisfiable if its nodes can be mapped to elements of a qualitative representation, preserving the constraints. If a constraint network is satisfiable then it is clearly qualitatively satisfiable, but the converse can fail. However, for a wide range of relation algebras including the point algebra, the Allen Interval Algebra, RCC8 and many others, a network is satisfiable if and only if it is qualitatively satisfiable. Unlike ordinary composition, the weak composition arising from qualitative representations need not be associative, so we can generalise by considering network satisfaction problems over non-associative algebras. We prove that computationally, qualitative representations have many advantages over ordinary representations: whereas many finite relation algebras have only infinite representations, every finite qualitatively representable algebra has a finite qualitative representation; the representability problem for (the atom structures of) finite non-associative algebras is NP-complete; the network satisfaction problem over a finite qualitatively representable algebra is always in NP; the validity of equations over qualitative representations is co-NP-complete. On the other hand we prove that there is no finite axiomatisation of the class of qualitatively representable algebras.Comment: 22 page
    corecore